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Evolutionary optimization algorithm by entropic sampling
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A combinatorial optimization algorithm, genetic-entropic algorithm, is proposed. This optimization algo-
rithm is based on the genetic algorithms and the natural selection via entropic sampling. With the entropic
sampling, this algorithm helps to escape local optima in the complex optimization problems. To test the
performance of the algorithm, we adopt tH& model(N is the number of bits in the string aidis the degree
of epistasiy and compare the performances of the proposed algorithm with those of the canonical genetic
algorithm. It is found that the higher th€ value, the better this algorithm can escape local optima and search
near global optimum. The characteristics of this algorithm in terms of the power spectrum analysis together
with the difference between two algorithms are discusp8ti063-651X98)10103-4

PACS numbegps): 02.70.Lq, 02.60.Pn, 87.53.Tf

[. INTRODUCTION qguence, it is hard to search as many configurations of the
solution as possible. The mutation operator by itself is often
There has been research on the optimization algorithmsot enough to prevent this premature convergence. To avoid
that mimics the biological evolution and natural selection tothis difficulty, it is necessary to maintain two basic strategies
study complex systems. Genetic algorithfh§ evolutionary  in the general optimization problems: “exploring” robustly
programming[2], and evolutionary strategidS8] are cur- as many configurations as possible while “exploiting” the
rently in the mainstream of the investigation. They sharebest solutions to the given population.
many aspects of evolution in common: each maintains a Entropic sampling4] provides a way to overcome this
given population of the trial solution to the problem, imposesdifficulty. This sampling directs the evolution to lower en-
genetic and/or random changes to the configuration of th&opy of the system. In this way, the rate of rare configura-
solution, and makes selections for survival for the next gentions to be selected is higher than that of abundant configu-
erations. Although these algorithms use the concept of evaations. As a result, if a configuration falls into a local
lution as the underlying principle, there are somewhat differ-minimum and many are piled up, the rate of the acceptance
ent viewpoints as to what exactly is being evolved. In theof configurations concentrated near the local minimum is
genetic algorithms, for example, simulated evolution is em-ighly suppressed, which leads the system to escape easily
phasized on the genotypic level, that is, on the level of thérom the local minimum. Therefore, by utilizing the entropic
string of the symbolg¢chromosomg via crossover and mu- sampling in the acceptance of the offspring, one can over-
tation. However, in the evolutionary programming and evo-come the high barriers between local minima and continue to
lutionary strategies, evolution is realized by implementingsearch for the global or nearly global minimum. Contribu-
the change in the adaptation and the diversity of the populaions were made to emphasize the effect of the entropic sam-
tions of the organisms. pling in the genetic algorithmg5,6] and the simulated an-
In the usual evolutionary optimization algorithms, evennealing[7].
though the selection scheme can be performed in any of sev- This work, which is based on entropic sampling and ge-
eral ways, selections almost always use the fitMessen-  netic algorithms, attempts to provide an optimization algo-
ergy function as the measure of the survival for the nextrithm based on the neutrally selective genetic change in the
generation(From now on, we use fitness and energy inter-level of the chromosome and the entropy-based selection.
changeably That is, selection is implemented by giving From this one can view the evolution as an interplay between
higher probability to the fitter individuals to survive for the variation and selection. More specifically, variation is carried
next generation. Partially due to the selection rules and gesut by the random drift of the genotype by choosing two
netic operators that are designed to exploit better fitness iparents randomly and performing genetic operati@ness-
the population, one encounters problems of falling into oneover and/or mutationapplied to the genotypic level and
of many local optima in the optimization of the complex natural selection takes place via the entropic sampling. In
systems. In the canonical genetic algorithms, for exampleparticular, acceptance of the new offspring is determined by
once a configuration of a system reaches one of the locantropic sampling, which also provides a natural link be-
minima, it is apt for other configurations to be accumulatedtween the behavior of the genotypic level and that of the
in the local minimum, which leads to a premature conver-phenotypic level.
gence. This premature convergence is manifested as a pre- To test the performance of the proposed algorithm, the
mature loss of diversity in the population and, as a conseNK model(N is the number of bits in the string afdis the
degree of epistagig8], a generalization of the spin-glass
model, was chosen with a tunable ruggedness pararieter
*Electronic address: clee@logos.etri.re.kr We demonstrate that the genetic search under the guidance
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of entropic sampling yields better results than the convenk should be noted that, in this way, the probability of having
tional genetic algorithms especially for rugged landscapes. energyE is the same irrespective of the energy. Hence this
This contribution is organized as follows: In Sec. I, we sampling method provides for a random walk through the
discussed the idea of entropic sampling. This is followed bysystem’s energy space. In the energy space, this sampling
the procedure of the genetic-entropic algorithm and the rolenethod is designed to access all the fithess space with an
of the entropic sampling to the proposed algorithm. Theequal probability.
simulation results and the characteristics of the algorithm One general way to produce random variables with a
using NK model are presented in Sec. IV. The last section igiven probability distribution is known as the Metropolis al-

devoted to the conclusion. gorithm [9]. In this algorithm, a trial configuration repre-
sented byx’ is accepted or rejected with respect to the test
Il. ENTROPIC SAMPLING configurationx according to the rati@, which is known as

. ) . the detailed balanced condition,
In the usual Monte Carlo simulation, the importance sam-

pling comes in' if one choose®, , the sampling probability W(x—x") s )
of having configuratiorx, to be proportional to the Boltz- r= ; = el SECN=SEXN} 7
mann factor,8E(x), W(X'—X)

P, =Ce FEX), (1) whereW, transition probability, depends only on the change

in fitness. Ifr=1, then the trial configuration is accepted. If
where C=3,e PE® and g=(kT)"! . The probability <1, the configuration is accepted with a probabitityThis
Pg(E) that a system has an energy in a small range betwedatter can be accomplished by comparingvith a random
E andE+ SE can be obtained simply by adding the prob- number generated from the uniform distribution in the inter-
abilities for all states whose energy lies in this range; i.e., val between 0 and 1.
To achieve the sampling with the entropy of the system,
we need to know the entropy of the system. In general, the
PB(E):(X:E<EE<E+6E) Py @) entropyS(E) is not knowna priori. To know the exact en-
" tropy is in fact equivalent to solve the problem in the first
Since all these states are equally probable, one needs to mplace. We, however, can estimate entropy by short simula-
tiply the number of the stat@r configuration in this energy  tion starting with an incorrect test entroi8(E)=0 for all

range. Therefore, the probabilig(E) becomes energy and successively simulating with an ever better esti-
mate of the true entropy. This optimization method is based
Pg(E)=CQ(E)e FE=gSE/KAE, (3)  on the feedback information about the entropy of the system,

] ] . which can be obtained by the following schef&7]: (i)
Here, Q(E) is the number of the possible states with thegiart with a test entropy(E)=0. (ii) From the local simu-

energyE and entropy is defined as lations with the probability distribution of Eq7) obtain the
_ histogramH(E) of the states with fithess betweén and
S(E)=kInQ(E). @ ErsE. (iii ) corrected entropB(E) is given ag4]

k is the Boltzmann constant, which will be setke=1 for

convenience. Usually th& (E) is a rapidly increasing func- S(E)= J(E) i H(E)__O (8)
tion of E. This together with the rapidlglecreasingfactor J(E)+InH(E) otherwise.

e PE in the above equation results in a maximum probability

when the free energy =E—TSis minimum. The larger the IIl. GENETIC-ENTROPIC ALGORITHM

system, the shaper the maximumRg(E). Thus the prob- i ) ) ) )
ability of the occurrence of the lowest-energy state is very In practice, the genetic-entropic algorithm consists of the
small in this sampling method. This sampling method is genfollowing steps: _

erally a good method, but it fails to satisfy the ergodicity if ~Step 1Obtain a rough estimate of the entropy and prepare
there exist many high barriers between all the possible enthe initial test configurations: from the random configura-
ergy configurations. That is, it is hard to search the wholdions (or chromosompof the system, calculate the energy of
configuration space if the system has many deep |oc£onf|_gurat|ons and th_e|r histograms. Estimate the entropy ac-
minima. cording to the following formulas:

One way to overcome this difficulty is to relax the Boltz-
mann factor. By replacing3E by some arbitrary function
J(E), we ha_ve a fr_eedom to chooS¢E) in any way we whereH (E) is a histogram of the enerdy. Or, we can start
want. In particular, if we sel(E)=S(E), then the probabil- ; _

. i | . : with S(E)=0 for all E.
ity of the occurrence of a configuration with energyis
inversely proportional to the exponential of the entropy:

S(E)=InH(E), 9

PrepareN random configuration®,,P,,...,Py. Choose
randomly an initial test configurationfrom the initial popu-
~ S(E(x)) (5) lation and calculate the ener@(x) and the entropB(E(x))
of the configuration.
or Step 2 To obtain one offspring’ represented b, ; in
Fig. 1, select parents,P;) randomly from the population
Pe(E)cQ(E)e™ SECD), (6) and apply the crossover and mutation operators. One off-

Pyxe
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This extrapolation expedites the evolution of the system to
the desired direction. One can of course extrapolate other
ways for example, a more or less steeper slope. This may
relate to the faster or slower annealing rate.

Step 5 With the new estimate o8(E), repeat steps 2
through 4 to the desired number of the entropy evolution.

One more ingredient in this algorithm is the placement of
the hard wall. We particularly defing,,, as the location of
the wall andg,;, as the minimal energy obtained so far. By
fixing the interval betweek,,,, andE,,, annealing can be
achieved as a bettér,,;, is found. We also choose the size of
the sampling interval to be fixed and large enough to allow
fluctuations throughout the annealing process. The wall en-
ergy is the maximum energy that each chromosome can
have, beyond which all attempts are rejected. This wall-
energy mimics a slow lowering of the temperature in the
FIG. 1. Pictorial demonstration of the step 2 of the algorithm. Simulated annealing and the annealing is achieved by reduc-
ing the value of wall energy in the annealing direction. The

springx’ is chosen randomly out of two offspring. Calculate €@ct value of the wall energy is not important as long as it
the energyE(x’) of the new configuratiox’ and its corre- IS large enough. . :
sponding entropS(E(x')). If the energy is higher than the The main differences between the conventional genetic

wall, the new configuration is rejectddre will discuss this ~ 90rithms and this algorithm are twofold: Firstly, in the con-
below. To acceptx’ as a new configuration, compare ventional genetic algorithms, the better fithess a chromosome

S(E(x')) with S(E(x)) of thex, the latest accepted configu- has,_the higher its p_rot_)abil_ity of being selected in the repro-
ration represented b, in Fig. 1. This can be done by dycnon process. This |mpI|e_s that the ch.r.omosome.of better
evaluating the ratia from Eq. (7). If r=1, then the new fitness funcuoralwe}yshas higher p_rqbabﬂny to survive. In

configurationx’ is accepted and if<1, thenx’ is accepted the proposeq algorithm, however, it is not the fitness but the
with the probabilityr. This can be done by comparingvith entropy that is the measure of the survival for the next gen-
(o, @ uniform random variable from O to 1. If the configura- eration. Thus, even if a chromosome has a worse fitness, it

tion x’ is accepted, then the corresponding histogram isc:ould have a higher probability of being selected if it falls in

added by 1 unit, that isH(E(x'))—H(E(x'))+ 1 and the rare configurations. Secondly, in the conventional genetic al-
trial configuratio’nx’ beéomes test configuration. If re- gorithms, competitions are made in the course of the repro-

. : ductions, that is, competitions occur in the selection proce-
jected, select parents from the population randomly and reg h 0 h duction | ied
eat the above procedure until a new configuration is acs e among the parents. Once the reproduction is carried out,
gepted the offsprings are produced in parallel and there is no direct

Repeat this procedure until the number of the accepte orrelation among offspring except through their parents.

) ! . : hereas in the proposed algorithm, parents are selected ran-
configurations is the same as that of the population. Now, th i ;
. . omly and the competitions are made in the course of the
set of the accepted configurationS,(,C,,...,Cy) becomes

the new population for the next generation. Figure 1 Shostfwceptance of the new configurations rather than in the level

the pictorial explanation of this step. of parents. Each produced offspring is testedbe accepted

. . or rejected against the previously accepted offspring
Step 3 Repeat step 2 until one reaches the desired ger1hrough the Metropolis algorithm. That is, there is a prob-

erations for t'he entropy upda@e. This comple’ges one entrop bility competition between the two subsequent offspring. In
evolution unit, that is, the estimated entropy is not change his way, the next generation consists of offspring that are

during this step. In this step, the number of generations foFandom samples of the desired probability distribution.

the entropy update is a parameter that needs to be chosen.With this sampling method, the system can escape from
Aftgrtontfar-]comtpletes one entropy evolution unit, one needs t?ocal minima with relative ea’se. In the genetic algorithm
update the entropy. . . once a population falls in a local minimum, it tends to stay ir;
pieitg(pE;l }/c\)/:tg:;ﬁ; Ziiflflow?ograms’ estimatay entro- the_local minima. This leads to premature convergence. Th_e
' main operation that prevents this premature convergence is
mutation. Mutation alone, however, is sometimes not suffi-
J(E) if H(E)=0 cient. When mutation probability is small, it is hard to get
J(E)+InH(E) otherwise 10 oyt of the local minimum, especially for a very rugged fit-
ness landscape. When the mutation probability is large
enough to escape the local minimum, it is apt to yield a
random search that is far from the optimization. Whereas in
the genetic-entropic algorithm, the probability of finding the
system in the configuratior is proportional to the entropy
of the system,

S(E)=

whereH(E) is the unnormalized histogram of the sampling.
If Enin is the minimum fitness obtained so far, then for
E<Ei, we extrapolate the entrof§(E) with the slope

S( Emax) - S( Emin)
11
Emax— Emin (1) PE(x)oce‘ S(E(X)), (12)
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that is, the offspring are encouraged to decrease the entropy 0.4
Thus once the population near a local minimum increases.
the corresponding entropy near the local minimum becomes
large. Consequently, the rate of acceptance of a configuratior 0.36
near the local minimum becomes smaller, which helps to 0.34 H
escape from the local minimum.

The selection rules of the proposed algorithm for the off-
spring help one to search and maintain good schemata. Onc
an offspring finds a good schema, the next offspring tend to 0.28 -
maintain the schema because of the Metropolis algorithm. 0.26 L
Thus, the new schema remains robust against the crossove

0.38 |

0.32 -
03 r

minimum fithess

or mutation operators in the following generations. As a re- 024
sult, there is better chance of finding the global minimum. 0.22 r

There is one drawback to this algorithm. As we need to 02 ‘ - . . . . .
update the entropy after certain generations, it is difficult to 0 100 200 3oogen‘é?gﬁon500 600 700 800

determine when we need to update the entropy. This cer-
tainly depends on thg problem ".:lt hand and some trial and FIG. 2. Minimum fitness as a function of generation with
error _have to be carried out. It is, h.owever, found t.h_at, al 50 andk =8. We plot the minimum fitness up to the 800th gen-
least in NK model, the performance is not very sensitive tOgation. The unit of the fitness in theK model is dimensionless.
the choice of the generation of the entropy update.
The advantage of using thiéK model lies in its tunable
IV. EXPERIMENTAL RESULTS AND DISCUSSIONS ruggednessK =0, for example, yields that all loci are inde-
USING THE NK MODEL pendent among others and there is no ruggedness in the fit-
) ) ] ness landscape. As increases, each locus is more depen-
The proposed algorithm is tested against fhi¢ model.  gent on other loci, which, in turn, gives more ruggedness in
There are two major reasons to choose Mi& model to  the fitness landscape. A=N—1, the maximum possible

demonstrate the effectiveness of the proposed algorithmygiye of K, every locus depends on every other locus so
Firstly, this model provides a natural means of the coding. liyaximum ruggedness occursl].

is free of the representation problem and there is no ambigu- The proposed and the conventional genetic algorithms are
ity of the definition of the fitness. In this way, one can com-iacted against the NK model with vario#s The K other
pare the proposed algorithm with the canonical genetic algop; for each locus are chosen randomly. The parameters that
rithms without having dependence of the coding and thgye have used for both algorithms are the followifignum-
ordering problems(Coding and ordering problems in the per of the population: 500(i) crossover operator: 1 point
ggnetic algorithms do occur in other problems, such as traverossover operatofiii) mutation probability: 0.02(iv) se-
eling salesman probleriTSF). See Ref.[10] for details) |ection: tournament selection with tournament size 5, for the
Secondly, in this model, the ruggedness can be controllegenetiC algorithm only(v) entropy update: every 50 genera-

[8]. That is, by adjustindC, one can tune the ruggedness of tjons, for the genetic-entropic algorithm onlyj) number of
the fitness landscape of the model so that one can have gneration: 2000 generations.

tunable number of local minima and as a _rgsult can test the Figure 2 shows a typical behavior of the minimum fitness
performance of the escaping from local minima. _ as a function of generations. As can be seen from Fig. 2, the
The NK model defines a class of parametrizable fithessystem reaches a local minimum and stays near it until we
landscape whose search space is composed of all possiteach approximately the 150th generation. During the period
configurations oN loci, denoted bys={s;},i=1,...N. ItiS  when the system stays near the local minimum, the histo-
a simple class of landscapes whose ruggedness can be ctams in the vicinity of the local minimum pile up. As a
trolled by the parametef, the degree of epistasiK is the  result, when the entropy is updated at the 150th generation,
number of other loci on which the fitness contribution of the entropy in the vicinity of the local minimum is large
each locus depends. For each lociistheK other loci can  enough so that entropy in the lower fitness configuration be-
be chosen either randomly or according to some topology. Ifomes larger than that of higher fitness. This causes the
we restrict possible values of each locgisto be 0 and 1, higher fithess configurations to have higher probabilities to
then the size of the search space 8. 2f we denote pe accepted from Eq@8). Therefore, selection of the off-
r_ﬂ:(nl,nz,...,nK) as the set of th&K loci on which the spring tends toward the higher fitness state, which is mani-
fitness of the locus depends, then the interaction spacefested as the first bump in Fig. 2. After producing configu-
(s:,n) consists of £*1 possible configurations &€ +1 al-  rations of higher fitness for some generations, the entropy in
leles and assign a randomly chosen fitnEsbetween 0 and  the higher fitness area becomes large and the updated en-
1 to each such configuration. The fitness of the each chrdfopy forces the system to produce the offspring of lower

mosome is then defined as the average of the fitness for eafifl€ss. In this way, the population can get out of the local
locus: minimum and look for the global minimum. As the system

repeats this process, it reaches a lower fithess than reached
LN by previous systems.
_ In Figs. 3 and 4, we compare the performance of the
E(s)= =2, Ei(s). 13 . . . )
S Niz (9 (13 proposed algorithm with the conventional genetic algo-
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TABLE I. Performance comparison of the both algorithms with

0.3
_ various size of populations. The data are obtainedN\fer30 and
0.29 1 _genelic re— 4 K=7. Top data are the minimum fithe@snits are dimensionless
genetic-entropic ~x— . . .
0.28 . obtained from the genetic-entrodi€E) algorithm and bottom from
027 | | the conventional genetic algorithrfSA). For each set, 10 indepen-
2 ' dent trials are averaged and corresponding standard deviations are
g 026 1 in the parentheses.
E 025¢ .
£ Population 10 30 50 100 300 500
= 0.24 + 1
E 023 { i GE 0.23 0.22 0.23 0.21 0.21 0.21
022 L (0.02 (0.02 (0.0 (0.0) (0.02 (0.02
GA 0.27 0.27 0.27 0.25 0.24 0.24
021y (0.0) (002 (0.0) (002 (0.02 (0.02
0.2 .
2 8 10

istasis K - .
degree of epistasis To study the characteristics of the algorithm, we evalu-

FIG. 3. C . f th ;  th c al ated the power spectruf(w) of the fithess. Since we ac-
_ FIG. 3. Comparison of the performance of the genetic algo-.qt hffspring sequentially via the Metropolis algorithm, the
rithms and that of the genetic-entropic algorithm. The minimum

fitness (dimensionless quantitipsafter the 2000th generation is set of flmeSSE.(X) of the subsequent offspring can he re_.

plotted as a function oK. The top data are from the genetic algo- gardeq as a time SEres. To see the. effect Of.the emr.OpIC

rithms and the bottom are from the genetic-entropic algorithm. Thesampllng, we _Carrl_ed out the follow_l_ng experiment with

data are obtained froMi=50 and for eacK =2, 4, 6, 8. For each Many generations(i) N=50, K=4; (i) number of the

K, 10 independent trials are averaged and the error bars denoRPPUlation: 500(iii) number of the sample: 5 equally spaced

corresponding standard deviations. samples for each generatiaiiv) entropy update: every 200
generations(v) number of generations:>210° generations;

rithms. We especially plot the minimum fitness of th& (Vi) total number of data: % 10°.

model obtained by the proposed algorithm and the conven- A typical power spectrum outcome is shown in Fig. 5.

tional genetic algorithm as a function of the epistdéisAs ~ The power spectrum of the statistical time series approxi-

K becomes larger, we can see the clear difference, that is, theately forms a single power law in the forf(w)xw™* as

proposed algorithm performs better as the system becomédnctions of the frequency. It is found that the scaling

more rugged. This supports the proposition that the propose@xponent is remarkably different for the low, middle, and

algorithm can search the global minimum by escaping manyigh frequency states: for the low and high frequency ranges,

local minima. a is close to 0, whilea is far from O for the middle fre-

To see the population effect of these algorithms, we perguency range.
formed another experiment. In this experiment, we fixed all To analyze this further, we used the following relation:
parameters except the number of the population. Table Aw= 27/NAt, whereN is the total number of the data and

shows the result of the experiment with=30, K=7. As 12

we notice, the proposed algorithm shows better results over
all populations. From this experiment, one can conclude that 1l
the performance of the algorithm is independent of the num-
ber of the population. E 10}
0.32 & 9t
genetic ~s— g
ic- iC —— 13 L
03 | genetic-entropic 2 8
=3
S 7t
o 028}
o
E 6l
£ 026}
=3
E 5 : ' ' ' '
< ] 1 2 3 4 5 6
E 0.24 . log,, (frequency)
022 | _ FIG. 5. Full power spectrum of the times series of the fitness.
The power spectrurpF ()] versus frequencyd) is plotted loga-
02 , ‘ , ‘ . rithmically on the base of 10. The unit of frequencyiis !, where
’ 2 4 6 8 10 At is the sampling interval. The power spectrum can be divided into
degree of epistasis K three regions: low frequency region, froa=1 to w~500, which

corresponds to the twice entropy update, middle frequency region,
FIG. 4. Same as Fig. 3. The data are obtained fd#30 and  from »~500 to w~50 000, which corresponds to about 4 genera-
for eachK=3, 5, 7, 9. For eacl, 10 independent trials are aver- tions, high frequency region, from~50 000 tow=~5x 10°, which
aged and the error bars denote corresponding standard deviationsorresponds to each fitness unit.
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Aw and At are the frequency and time intervals, respec- 6
tively. By setting Aw=1 for convenience, we have
At=2x/N. Since the set of the time series consists of the
real part only, the frequency,,ax iS given as T
=3
g 5
127 N 4 8
= —= — ]
Wmax 2At 2° (14 g
[o]
From this, we can express any frequercin terms ofw 9;. A
[=2]
S
2
O Omax, (15
where n is the number of data corresponding to the fre- 3
guencyw. 3 4 5 6

. log,, (frequency)
At high w, F(w) tends to become constant. Note that

a=0 corresponds to a random walk, thus in the high fre-

. . . . FIG. 6. The power spectrufiF(w)] of the fithess versus fre-
guency range, the time series of the fithess function can b@uency ®) up to the entropy update generation. The low frequency

interpreted as a stochastic process. This implies that there jggion again starts at abowt~50 000. Again, the power spectrum
no correlation in this frequency range. Since this high fre{r ()] versus frequencyd) is plotted logarithmically on the base

quency range corresponds to the time series of a few genergf 10 and the unit of the frequency it~ , whereAt is the sam-
tion units, within a few generations the probability of subse-pling interval.

guent offspring to be accepted is independent of the fitness.

This is in accordance with the entropic sampling nature Ofjong are updated locally, that is, a trial configuration does
the algorithm. At loww, F(w) again tends to become con- o gifer much from the configuration against which the trial

stant up to a few entropy update units. This implies that afteg,iguration is tested. Consequently, an evenly scattered

the entropy is updated, the algorithm again searches the fiki,5 0k in the configuration space is hard to accomplish.
ness space with an equal probability,

. . ity, indicating that for th§yereas, in the genetic algorithms, offspring can be updated
long time scale the entropic sampling is also achieved.  giaha)ly namely, offspring can have quite different configu-
_In the middle frequency range, however, we have noNyaiinng from their parents due to the crossover operator.
trivial power behavior. Notice that the total time series con-pyqvever in the selection scheme configurations of higher
tains the effect of the entropy updating, which we set byginess always have a higher probability of being selected,

hand as a parameter. Thus, in order to see the correlatign q it is hard to escape from the local minima. The proposed
between generations within each entropy update unit, we calyqqrithm tends to overcome these shortcomings from the

culate the power spectrum of the time series up to the ergjmjated annealing and the genetic algorithms.
tropy update instead of having full time series. This is shown  gjnce the entropic sampling is a general selection scheme,
in Fig. 6. After eliminating the entropy updating effect, we i+ il be also interesting to apply the entropic sampling

still see a nonzero exponent indicating a long range correlgsqthqq to other evolutionary optimization algorithms, such
tion. They are correlated such that low fitness is likely to be,

) ; ¢ ~-as evolutionary programming and evolutionary strategies. As
close(in the time series sense each other and the same is \ye have mentioned in Sec. Ill, we have an additional param-
true for high .f|tness. This implies that once a good fithess ISter, namely, entropy update generation, that has to be deter-
found, next fitness tends to be good or better than the previgineq |t is desirable to have some criteria in which this
ous one. parameter can be fixed. The global convergence property

[13] of this algorithm is also important and this problem is
V. CONCLUSION under investigation. The mechanisms behind the algorithm
We propose an optimization algorithm based on the ge[emain to bg i.nve_stigated further together V\_/ith applications
netic algorithms and entropic sampling. This algorithm ex-10 other optimization proble_ms. The comparison of the pro-
hibits merits of the crossover operator in the genetic aIgopOS.ed algorlthm with the simulated annealing and other al-
rithms and utilize the idea of the entropic sampling. We30rthms is also under way.
apply this algorithm particularly to the NK model and com-
pare the performances of the algorithm with that of the con-
ventional genetic algorithms. By using this algorithm, we
obtain better performance than the conventional genetic al- The authors are very grateful to Dr. E. H. Lee for his
gorithms. As can be seen from the above section, this algeencouragement and support. This research was supported by
rithm performs better especially for the highkr rugged the Ministry of Information and Communications, Korea. S.
landscape. K. Han was also partially supported by SRC program of
In the conventional simulated annealifit@], configura- Seoul National University, Korea.
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