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Evolutionary optimization algorithm by entropic sampling
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A combinatorial optimization algorithm, genetic-entropic algorithm, is proposed. This optimization algo-
rithm is based on the genetic algorithms and the natural selection via entropic sampling. With the entropic
sampling, this algorithm helps to escape local optima in the complex optimization problems. To test the
performance of the algorithm, we adopt theNK model~N is the number of bits in the string andK is the degree
of epistasis! and compare the performances of the proposed algorithm with those of the canonical genetic
algorithm. It is found that the higher theK value, the better this algorithm can escape local optima and search
near global optimum. The characteristics of this algorithm in terms of the power spectrum analysis together
with the difference between two algorithms are discussed.@S1063-651X~98!10103-4#

PACS number~s!: 02.70.Lq, 02.60.Pn, 87.53.Tf
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I. INTRODUCTION

There has been research on the optimization algorith
that mimics the biological evolution and natural selection
study complex systems. Genetic algorithms@1#, evolutionary
programming@2#, and evolutionary strategies@3# are cur-
rently in the mainstream of the investigation. They sh
many aspects of evolution in common: each maintain
given population of the trial solution to the problem, impos
genetic and/or random changes to the configuration of
solution, and makes selections for survival for the next g
erations. Although these algorithms use the concept of e
lution as the underlying principle, there are somewhat diff
ent viewpoints as to what exactly is being evolved. In t
genetic algorithms, for example, simulated evolution is e
phasized on the genotypic level, that is, on the level of
string of the symbols~chromosome!, via crossover and mu
tation. However, in the evolutionary programming and ev
lutionary strategies, evolution is realized by implementi
the change in the adaptation and the diversity of the pop
tions of the organisms.

In the usual evolutionary optimization algorithms, ev
though the selection scheme can be performed in any of
eral ways, selections almost always use the fitness~or en-
ergy! function as the measure of the survival for the ne
generation.~From now on, we use fitness and energy int
changeably!. That is, selection is implemented by givin
higher probability to the fitter individuals to survive for th
next generation. Partially due to the selection rules and
netic operators that are designed to exploit better fitnes
the population, one encounters problems of falling into o
of many local optima in the optimization of the comple
systems. In the canonical genetic algorithms, for exam
once a configuration of a system reaches one of the l
minima, it is apt for other configurations to be accumula
in the local minimum, which leads to a premature conv
gence. This premature convergence is manifested as a
mature loss of diversity in the population and, as a con

*Electronic address: clee@logos.etri.re.kr
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quence, it is hard to search as many configurations of
solution as possible. The mutation operator by itself is of
not enough to prevent this premature convergence. To a
this difficulty, it is necessary to maintain two basic strateg
in the general optimization problems: ‘‘exploring’’ robustl
as many configurations as possible while ‘‘exploiting’’ th
best solutions to the given population.

Entropic sampling@4# provides a way to overcome thi
difficulty. This sampling directs the evolution to lower en
tropy of the system. In this way, the rate of rare configu
tions to be selected is higher than that of abundant confi
rations. As a result, if a configuration falls into a loc
minimum and many are piled up, the rate of the accepta
of configurations concentrated near the local minimum
highly suppressed, which leads the system to escape e
from the local minimum. Therefore, by utilizing the entrop
sampling in the acceptance of the offspring, one can ov
come the high barriers between local minima and continu
search for the global or nearly global minimum. Contrib
tions were made to emphasize the effect of the entropic s
pling in the genetic algorithms@5,6# and the simulated an
nealing@7#.

This work, which is based on entropic sampling and g
netic algorithms, attempts to provide an optimization alg
rithm based on the neutrally selective genetic change in
level of the chromosome and the entropy-based select
From this one can view the evolution as an interplay betw
variation and selection. More specifically, variation is carri
out by the random drift of the genotype by choosing tw
parents randomly and performing genetic operations~cross-
over and/or mutation! applied to the genotypic level an
natural selection takes place via the entropic sampling
particular, acceptance of the new offspring is determined
entropic sampling, which also provides a natural link b
tween the behavior of the genotypic level and that of
phenotypic level.

To test the performance of the proposed algorithm,
NK model~N is the number of bits in the string andK is the
degree of epistasis! @8#, a generalization of the spin-glas
model, was chosen with a tunable ruggedness parameteK.
We demonstrate that the genetic search under the guid
3611 © 1998 The American Physical Society
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3612 57CHANG-YONG LEE AND SEUNG KEE HAN
of entropic sampling yields better results than the conv
tional genetic algorithms especially for rugged landscape

This contribution is organized as follows: In Sec. II, w
discussed the idea of entropic sampling. This is followed
the procedure of the genetic-entropic algorithm and the
of the entropic sampling to the proposed algorithm. T
simulation results and the characteristics of the algorit
using NK model are presented in Sec. IV. The last sectio
devoted to the conclusion.

II. ENTROPIC SAMPLING

In the usual Monte Carlo simulation, the importance sa
pling comes in if one choosesPx , the sampling probability
of having configurationx, to be proportional to the Boltz
mann factor,bE(x),

Px5Ce2bE~x!, ~1!

where C5(xe
2bE(x) and b5(kT)21 . The probability

PB(E) that a system has an energy in a small range betw
E and E1dE can be obtained simply by adding the pro
abilities for all states whose energy lies in this range; i.e

PB~E!5 (
~x:E,Ex,E1dE!

Px . ~2!

Since all these states are equally probable, one needs to
tiply the number of the state~or configuration! in this energy
range. Therefore, the probabilityPB(E) becomes

PB~E!5CV~E!e2bE5eS~E!/k2bE. ~3!

Here, V(E) is the number of the possible states with t
energyE and entropy is defined as

S~E!5klnV~E!. ~4!

k is the Boltzmann constant, which will be set tok51 for
convenience. Usually theV(E) is a rapidly increasing func
tion of E. This together with the rapidlydecreasingfactor
e2bE in the above equation results in a maximum probabi
when the free energyF5E2TS is minimum. The larger the
system, the shaper the maximum inPB(E). Thus the prob-
ability of the occurrence of the lowest-energy state is v
small in this sampling method. This sampling method is g
erally a good method, but it fails to satisfy the ergodicity
there exist many high barriers between all the possible
ergy configurations. That is, it is hard to search the wh
configuration space if the system has many deep lo
minima.

One way to overcome this difficulty is to relax the Bolt
mann factor. By replacingbE by some arbitrary function
J(E), we have a freedom to chooseJ(E) in any way we
want. In particular, if we setJ(E)5S(E), then the probabil-
ity of the occurrence of a configuration with energyE is
inversely proportional to the exponential of the entropy:

Px}e2S„E~x!… ~5!

or

PE~E!}V~E!e2S„E~x!…. ~6!
-
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It should be noted that, in this way, the probability of havi
energyE is the same irrespective of the energy. Hence t
sampling method provides for a random walk through
system’s energy space. In the energy space, this samp
method is designed to access all the fitness space with
equal probability.

One general way to produce random variables with
given probability distribution is known as the Metropolis a
gorithm @9#. In this algorithm, a trial configuration repre
sented byx8 is accepted or rejected with respect to the t
configurationx according to the ratior , which is known as
the detailed balanced condition,

r[
W~x→x8!

W~x8→x!
5e$S„E~x!…2S„E~x8!…%, ~7!

whereW, transition probability, depends only on the chan
in fitness. Ifr>1, then the trial configuration is accepted.
r ,1, the configuration is accepted with a probabilityr . This
latter can be accomplished by comparingr with a random
number generated from the uniform distribution in the int
val between 0 and 1.

To achieve the sampling with the entropy of the syste
we need to know the entropy of the system. In general,
entropyS(E) is not knowna priori. To know the exact en-
tropy is in fact equivalent to solve the problem in the fir
place. We, however, can estimate entropy by short sim
tion starting with an incorrect test entropyS(E)50 for all
energy and successively simulating with an ever better e
mate of the true entropy. This optimization method is bas
on the feedback information about the entropy of the syst
which can be obtained by the following scheme@4,7#: ~i!
start with a test entropyJ(E)50. ~ii ! From the local simu-
lations with the probability distribution of Eq.~7! obtain the
histogramH(E) of the states with fitness betweenE and
E1dE . ~iii ! corrected entropyS(E) is given as@4#

S~E!5H J~E! if H~E!50

J~E!1 lnH~E! otherwise.
~8!

III. GENETIC-ENTROPIC ALGORITHM

In practice, the genetic-entropic algorithm consists of
following steps:

Step 1. Obtain a rough estimate of the entropy and prep
the initial test configurations: from the random configur
tions ~or chromosome! of the system, calculate the energy
configurations and their histograms. Estimate the entropy
cording to the following formulas:

S~E!5 lnH~E!, ~9!

whereH(E) is a histogram of the energyE. Or, we can start
with S(E)50 for all E.

PrepareN random configurationsP1 ,P2 ,...,PN . Choose
randomly an initial test configurationx from the initial popu-
lation and calculate the energyE(x) and the entropyS„E(x)…
of the configuration.

Step 2. To obtain one offspringx8 represented byCk11 in
Fig. 1, select parents (Pi ,Pj ) randomly from the population
and apply the crossover and mutation operators. One
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57 3613EVOLUTIONARY OPTIMIZATION ALGORITHM B Y . . .
springx8 is chosen randomly out of two offspring. Calcula
the energyE(x8) of the new configurationx8 and its corre-
sponding entropyS„E(x8)…. If the energy is higher than th
wall, the new configuration is rejected~we will discuss this
below!. To accept x8 as a new configuration, compar
S„E(x8)… with S„E(x)… of thex, the latest accepted configu
ration represented byCk in Fig. 1. This can be done b
evaluating the ratior from Eq. ~7!. If r>1, then the new
configurationx8 is accepted and ifr ,1, thenx8 is accepted
with the probabilityr . This can be done by comparingr with
r 0, a uniform random variable from 0 to 1. If the configur
tion x8 is accepted, then the corresponding histogram
added by 1 unit, that is,H„E(x8)…→H„E(x8)…11 and the
trial configurationx8 becomes test configurationx. If re-
jected, select parents from the population randomly and
peat the above procedure until a new configuration is
cepted.

Repeat this procedure until the number of the accep
configurations is the same as that of the population. Now,
set of the accepted configurations (C1 ,C2 ,...,CN) becomes
the new population for the next generation. Figure 1 sho
the pictorial explanation of this step.

Step 3. Repeat step 2 until one reaches the desired g
erations for the entropy update. This completes one entr
evolution unit, that is, the estimated entropy is not chan
during this step. In this step, the number of generations
the entropy update is a parameter that needs to be cho
After one completes one entropy evolution unit, one need
update the entropy.

Step 4. With the updated histograms, estimatenewentro-
piesS(E) for eachE as follows:

S~E!5H J~E! if H~E!50

J~E!1 lnH~E! otherwise
~10!

whereH(E) is the unnormalized histogram of the samplin
If Emin is the minimum fitness obtained so far, then f
E,Emin we extrapolate the entropyS(E) with the slope

S~Emax!2S~Emin!

Emax2Emin
~11!

FIG. 1. Pictorial demonstration of the step 2 of the algorithm
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This extrapolation expedites the evolution of the system
the desired direction. One can of course extrapolate o
ways for example, a more or less steeper slope. This m
relate to the faster or slower annealing rate.

Step 5. With the new estimate ofS(E), repeat steps 2
through 4 to the desired number of the entropy evolution

One more ingredient in this algorithm is the placement
the hard wall. We particularly defineEmax as the location of
the wall andEmin as the minimal energy obtained so far. B
fixing the interval betweenEmax andEmin , annealing can be
achieved as a betterEmin is found. We also choose the size
the sampling interval to be fixed and large enough to all
fluctuations throughout the annealing process. The wall
ergy is the maximum energy that each chromosome
have, beyond which all attempts are rejected. This w
energy mimics a slow lowering of the temperature in t
simulated annealing and the annealing is achieved by re
ing the value of wall energy in the annealing direction. T
exact value of the wall energy is not important as long a
is large enough.

The main differences between the conventional gen
algorithms and this algorithm are twofold: Firstly, in the co
ventional genetic algorithms, the better fitness a chromoso
has, the higher its probability of being selected in the rep
duction process. This implies that the chromosome of be
fitness functionalwayshas higher probability to survive. In
the proposed algorithm, however, it is not the fitness but
entropy that is the measure of the survival for the next g
eration. Thus, even if a chromosome has a worse fitnes
could have a higher probability of being selected if it falls
rare configurations. Secondly, in the conventional genetic
gorithms, competitions are made in the course of the rep
ductions, that is, competitions occur in the selection pro
dure among the parents. Once the reproduction is carried
the offsprings are produced in parallel and there is no dir
correlation among offspring except through their paren
Whereas in the proposed algorithm, parents are selected
domly and the competitions are made in the course of
acceptance of the new configurations rather than in the le
of parents. Each produced offspring is tested~to be accepted
or rejected! against the previously accepted offsprin
through the Metropolis algorithm. That is, there is a pro
ability competition between the two subsequent offspring.
this way, the next generation consists of offspring that
random samples of the desired probability distribution.

With this sampling method, the system can escape fr
local minima with relative ease. In the genetic algorith
once a population falls in a local minimum, it tends to stay
the local minima. This leads to premature convergence.
main operation that prevents this premature convergenc
mutation. Mutation alone, however, is sometimes not su
cient. When mutation probability is small, it is hard to g
out of the local minimum, especially for a very rugged fi
ness landscape. When the mutation probability is la
enough to escape the local minimum, it is apt to yield
random search that is far from the optimization. Whereas
the genetic-entropic algorithm, the probability of finding th
system in the configurationx is proportional to the entropy
of the system,

PE~x!}e2S„E~x!…, ~12!
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3614 57CHANG-YONG LEE AND SEUNG KEE HAN
that is, the offspring are encouraged to decrease the entr
Thus once the population near a local minimum increas
the corresponding entropy near the local minimum becom
large. Consequently, the rate of acceptance of a configura
near the local minimum becomes smaller, which helps
escape from the local minimum.

The selection rules of the proposed algorithm for the o
spring help one to search and maintain good schemata. O
an offspring finds a good schema, the next offspring tend
maintain the schema because of the Metropolis algorit
Thus, the new schema remains robust against the cross
or mutation operators in the following generations. As a
sult, there is better chance of finding the global minimum

There is one drawback to this algorithm. As we need
update the entropy after certain generations, it is difficult
determine when we need to update the entropy. This
tainly depends on the problem at hand and some trial
error have to be carried out. It is, however, found that,
least in NK model, the performance is not very sensitive
the choice of the generation of the entropy update.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
USING THE NK MODEL

The proposed algorithm is tested against theNK model.
There are two major reasons to choose theNK model to
demonstrate the effectiveness of the proposed algorit
Firstly, this model provides a natural means of the coding
is free of the representation problem and there is no amb
ity of the definition of the fitness. In this way, one can co
pare the proposed algorithm with the canonical genetic a
rithms without having dependence of the coding and
ordering problems.~Coding and ordering problems in th
genetic algorithms do occur in other problems, such as t
eling salesman problem~TSF!. See Ref.@10# for details.!
Secondly, in this model, the ruggedness can be contro
@8#. That is, by adjustingK, one can tune the ruggedness
the fitness landscape of the model so that one can ha
tunable number of local minima and as a result can test
performance of the escaping from local minima.

The NK model defines a class of parametrizable fitn
landscape whose search space is composed of all pos
configurations ofN loci, denoted bys5$si%,i 51,...,N. It is
a simple class of landscapes whose ruggedness can be
trolled by the parameterK, the degree of epistasis.K is the
number of other loci on which the fitness contribution
each locusi depends. For each locusi , theK other loci can
be chosen either randomly or according to some topology
we restrict possible values of each locussi to be 0 and 1,
then the size of the search space is 2N. If we denote
ni
W5(n1 ,n2 ,...,nK) as the set of theK loci on which the
fitness of the locusi depends, then the interaction spa
(si ,ni

W ) consists of 2K11 possible configurations ofK11 al-
leles and assign a randomly chosen fitnessEi between 0 and
1 to each such configuration. The fitness of the each c
mosome is then defined as the average of the fitness for
locus:

E~s!5
1

N(
i 51

N

Ei~s!. ~13!
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The advantage of using theNK model lies in its tunable
ruggedness.K50, for example, yields that all loci are inde
pendent among others and there is no ruggedness in th
ness landscape. AsK increases, each locus is more depe
dent on other loci, which, in turn, gives more ruggedness
the fitness landscape. AtK5N21, the maximum possible
value of K, every locus depends on every other locus
maximum ruggedness occurs@11#.

The proposed and the conventional genetic algorithms
tested against the NK model with variousK. The K other
loci for each locus are chosen randomly. The parameters
we have used for both algorithms are the following:~i! num-
ber of the population: 500;~ii ! crossover operator: 1 poin
crossover operator;~iii ! mutation probability: 0.02;~iv! se-
lection: tournament selection with tournament size 5, for
genetic algorithm only;~v! entropy update: every 50 gener
tions, for the genetic-entropic algorithm only;~vi! number of
generation: 2000 generations.

Figure 2 shows a typical behavior of the minimum fitne
as a function of generations. As can be seen from Fig. 2,
system reaches a local minimum and stays near it until
reach approximately the 150th generation. During the per
when the system stays near the local minimum, the his
grams in the vicinity of the local minimum pile up. As
result, when the entropy is updated at the 150th genera
the entropy in the vicinity of the local minimum is larg
enough so that entropy in the lower fitness configuration
comes larger than that of higher fitness. This causes
higher fitness configurations to have higher probabilities
be accepted from Eq.~8!. Therefore, selection of the off
spring tends toward the higher fitness state, which is ma
fested as the first bump in Fig. 2. After producing config
rations of higher fitness for some generations, the entrop
the higher fitness area becomes large and the updated
tropy forces the system to produce the offspring of low
fitness. In this way, the population can get out of the lo
minimum and look for the global minimum. As the syste
repeats this process, it reaches a lower fitness than rea
by previous systems.

In Figs. 3 and 4, we compare the performance of
proposed algorithm with the conventional genetic alg

FIG. 2. Minimum fitness as a function of generation withN
550 andK58. We plot the minimum fitness up to the 800th ge
eration. The unit of the fitness in theNK model is dimensionless.
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57 3615EVOLUTIONARY OPTIMIZATION ALGORITHM B Y . . .
rithms. We especially plot the minimum fitness of theNK
model obtained by the proposed algorithm and the conv
tional genetic algorithm as a function of the epistasisK. As
K becomes larger, we can see the clear difference, that is
proposed algorithm performs better as the system beco
more rugged. This supports the proposition that the propo
algorithm can search the global minimum by escaping m
local minima.

To see the population effect of these algorithms, we p
formed another experiment. In this experiment, we fixed
parameters except the number of the population. Tab
shows the result of the experiment withN530, K57. As
we notice, the proposed algorithm shows better results o
all populations. From this experiment, one can conclude
the performance of the algorithm is independent of the nu
ber of the population.

FIG. 3. Comparison of the performance of the genetic al
rithms and that of the genetic-entropic algorithm. The minimu
fitness ~dimensionless quantities! after the 2000th generation i
plotted as a function ofK. The top data are from the genetic alg
rithms and the bottom are from the genetic-entropic algorithm.
data are obtained fromN550 and for eachK52, 4, 6, 8. For each
K, 10 independent trials are averaged and the error bars de
corresponding standard deviations.

FIG. 4. Same as Fig. 3. The data are obtained fromN530 and
for eachK53, 5, 7, 9. For eachK, 10 independent trials are ave
aged and the error bars denote corresponding standard deviat
n-
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es
ed
y

r-
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To study the characteristics of the algorithm, we eva
ated the power spectrumF(v) of the fitness. Since we ac
cept offspring sequentially via the Metropolis algorithm, t
set of fitnessE(x) of the subsequent offspring can be r
garded as a time series. To see the effect of the entr
sampling, we carried out the following experiment wi
many generations:~i! N550, K54; ~ii ! number of the
population: 500;~iii ! number of the sample: 5 equally spac
samples for each generation;~iv! entropy update: every 200
generations;~v! number of generations: 23105 generations;
~vi! total number of data: 13106.

A typical power spectrum outcome is shown in Fig.
The power spectrum of the statistical time series appro
mately forms a single power law in the formF(v)}v2a as
functions of the frequencyv. It is found that the scaling
exponenta is remarkably different for the low, middle, an
high frequency states: for the low and high frequency rang
a is close to 0, whilea is far from 0 for the middle fre-
quency range.

To analyze this further, we used the following relatio
Dv5 2p/NDt, whereN is the total number of the data an

TABLE I. Performance comparison of the both algorithms w
various size of populations. The data are obtained forN530 and
K57. Top data are the minimum fitness~units are dimensionless!
obtained from the genetic-entropic~GE! algorithm and bottom from
the conventional genetic algorithms~GA!. For each set, 10 indepen
dent trials are averaged and corresponding standard deviation
in the parentheses.

Population 10 30 50 100 300 500

GE 0.23 0.22 0.23 0.21 0.21 0.21
~0.02! ~0.02! ~0.01! ~0.01! ~0.02! ~0.02!

GA 0.27 0.27 0.27 0.25 0.24 0.24
~0.01! ~0.02! ~0.01! ~0.02! ~0.02! ~0.02!

-

e

ote

s.

FIG. 5. Full power spectrum of the times series of the fitne
The power spectrum@F(v)# versus frequency (v) is plotted loga-
rithmically on the base of 10. The unit of frequency isDt21, where
Dt is the sampling interval. The power spectrum can be divided i
three regions: low frequency region, fromv51 to v'500, which
corresponds to the twice entropy update, middle frequency reg
from v'500 tov'50 000, which corresponds to about 4 gene
tions, high frequency region, fromv'50 000 tov'53105, which
corresponds to each fitness unit.
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Dv and Dt are the frequency and time intervals, respe
tively. By setting Dv51 for convenience, we hav
Dt52p/N. Since the set of the time series consists of
real part only, the frequencyvmax is given as

vmax5
1

2

2p

Dt
5

N

2
. ~14!

From this, we can express any frequencyv in terms ofvmax:

v5
2

n
vmax, ~15!

where n is the number of data corresponding to the f
quencyv.

At high v, F(v) tends to become constant. Note th
a50 corresponds to a random walk, thus in the high f
quency range, the time series of the fitness function can
interpreted as a stochastic process. This implies that the
no correlation in this frequency range. Since this high f
quency range corresponds to the time series of a few gen
tion units, within a few generations the probability of subs
quent offspring to be accepted is independent of the fitn
This is in accordance with the entropic sampling nature
the algorithm. At lowv, F(v) again tends to become con
stant up to a few entropy update units. This implies that a
the entropy is updated, the algorithm again searches the
ness space with an equal probability, indicating that for
long time scale the entropic sampling is also achieved.

In the middle frequency range, however, we have n
trivial power behavior. Notice that the total time series co
tains the effect of the entropy updating, which we set
hand as a parameter. Thus, in order to see the correla
between generations within each entropy update unit, we
culate the power spectrum of the time series up to the
tropy update instead of having full time series. This is sho
in Fig. 6. After eliminating the entropy updating effect, w
still see a nonzero exponent indicating a long range corr
tion. They are correlated such that low fitness is likely to
close~in the time series sense! to each other and the same
true for high fitness. This implies that once a good fitnes
found, next fitness tends to be good or better than the pr
ous one.

V. CONCLUSION

We propose an optimization algorithm based on the
netic algorithms and entropic sampling. This algorithm e
hibits merits of the crossover operator in the genetic al
rithms and utilize the idea of the entropic sampling. W
apply this algorithm particularly to the NK model and com
pare the performances of the algorithm with that of the c
ventional genetic algorithms. By using this algorithm, w
obtain better performance than the conventional genetic
gorithms. As can be seen from the above section, this a
rithm performs better especially for the higherK, rugged
landscape.

In the conventional simulated annealing@12#, configura-
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tions are updated locally, that is, a trial configuration do
not differ much from the configuration against which the tr
configuration is tested. Consequently, an evenly scatte
search in the configuration space is hard to accompl
Whereas, in the genetic algorithms, offspring can be upda
globally, namely, offspring can have quite different config
rations from their parents due to the crossover opera
However, in the selection scheme, configurations of hig
fitness always have a higher probability of being select
thus it is hard to escape from the local minima. The propo
algorithm tends to overcome these shortcomings from
simulated annealing and the genetic algorithms.

Since the entropic sampling is a general selection sche
it will be also interesting to apply the entropic samplin
method to other evolutionary optimization algorithms, su
as evolutionary programming and evolutionary strategies.
we have mentioned in Sec. III, we have an additional para
eter, namely, entropy update generation, that has to be d
mined. It is desirable to have some criteria in which th
parameter can be fixed. The global convergence prop
@13# of this algorithm is also important and this problem
under investigation. The mechanisms behind the algorit
remain to be investigated further together with applicatio
to other optimization problems. The comparison of the p
posed algorithm with the simulated annealing and other
gorithms is also under way.
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FIG. 6. The power spectrum@F(v)# of the fitness versus fre
quency (v) up to the entropy update generation. The low frequen
region again starts at aboutv'50 000. Again, the power spectrum
@F(v)# versus frequency (v) is plotted logarithmically on the bas
of 10 and the unit of the frequency isDt21, whereDt is the sam-
pling interval.
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@3# T. Bäck and H.-P. Schwefel, Evolutionary Comput.1, 1
~1993!.

@4# J. Lee, Phys. Rev. Lett.71, 211 ~1993!.
@5# C.-Y. Lee and S. K. Han, inProceedings of the 1997 IEEE

International Conference on Evolutionary Computation,edited
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